- I moved the Y stepper motor driver cooler to give better access to its potentiometer, since it was overheating. Also applied thermal paste for superior heat transfer to the frame. I notice now that the power supply gives a nice breeze of air, I should point that at the drivers:)
- Took off the Z stage and tightened the mount.
- Mounted X and Z stage opto endstops.
- Found some thin metal plates to trigger the endstops.
- Ran some stress tests on the stages. The Y stage has a disconcerting tendency to just randomly refuse to move. Maybe more oil is needed.
- The extruder driver is not currently overheating, a step forward.
- I can get the extruder to heat using ReplicatorG, but the thermistor readings still look digital.
- Mounted X and Z minimum opto endstops.
- Used some scrap metal straps from the new CNC to make the endstop triggers.
These are the relevant config files, for debugging the thermistor problems:
config.h:
/* Notice to developers: this file is intentionally included twice. */ /** \file \brief Sample Configuration \note this sample uses AIO0 for both X_STEP and thermistor, and is intended to be an example only! */ /* CONTENTS 1. Mechanical/Hardware 2. Acceleration settings 3. Pinouts 4. Temperature sensors 5. Heaters 6. Communication options 7. Miscellaneous 8. Appendix A - PWMable pins and mappings */ /***************************************************************************\ * * * 1. MECHANICAL/HARDWARE * * * \***************************************************************************/ /* Set your microcontroller type in Makefile! atmega168/atmega328p/atmega644p/atmega1280 If you want to port this to a new chip, start off with arduino.h and see how you go. */ /** \def F_CPU CPU clock rate */ #ifndef F_CPU #define F_CPU 16000000UL #endif /** \def MOTHERBOARD This is the motherboard, as opposed to the extruder. See extruder/ directory for GEN3 extruder firmware */ #define MOTHERBOARD /** \def STEPS_PER_M steps per meter ( = steps per mm * 1000 ) calculate these values appropriate for your machine for threaded rods, this is (steps motor per turn) / (pitch of the thread) * 1000 for belts, this is (steps per motor turn) / (number of gear teeth) / (belt module) * 1000 half-stepping doubles the number, quarter stepping requires * 4, etc. valid range = 20 to 4'0960'000 (0.02 to 40960 steps/mm) all numbers are integers, so no decimal point, please :-) */ #define STEPS_PER_M_X 266666 #define STEPS_PER_M_Y 266666 #define STEPS_PER_M_Z 266666 /// http://blog.arcol.hu/?p=157 may help with this one #define STEPS_PER_M_E 320000 /* Values depending on the capabilities of your stepper motors and other mechanics. All numbers are integers, no decimals allowed. Units are mm/min */ /// used for G0 rapid moves and as a cap for all other feedrates #define MAXIMUM_FEEDRATE_X 500 // 226 #define MAXIMUM_FEEDRATE_Y 500 // 226 #define MAXIMUM_FEEDRATE_Z 500 // 226 #define MAXIMUM_FEEDRATE_E 200 /// used when searching endstops and as default feedrate #define SEARCH_FEEDRATE_X 50 #define SEARCH_FEEDRATE_Y 50 #define SEARCH_FEEDRATE_Z 50 // no SEARCH_FEEDRATE_E, as E can't be searched /** \def SLOW_HOMING wether to search the home point slowly With some endstop configurations, like when probing for the surface of a PCB, you can't deal with overrunning the endstop. In such a case, uncomment this definition. */ // #define SLOW_HOMING /// this is how many steps to suck back the filament by when we stop. set to zero to disable #define E_STARTSTOP_STEPS 20 /** Soft axis limits, in mm. Define them to your machine's size relative to what your host considers to be the origin. */ #define X_MIN -140.0 #define X_MAX 140.0 #define Y_MIN -80.0 #define Y_MAX 80.0 #define Z_MIN -55.0 #define Z_MAX 55.0 /** \def E_ABSOLUTE Some G-Code creators produce relative length commands for the extruder, others absolute ones. G-Code using absolute lengths can be recognized when there are G92 E0 commands from time to time. If you have G92 E0 in your G-Code, define this flag. This is the startup default and can be changed with M82/M83 while running. */ // #define E_ABSOLUTE /***************************************************************************\ * * * 2. ACCELERATION * * * * IMPORTANT: choose only one! These algorithms choose when to step, trying * * to use more than one will have undefined and probably * * disastrous results! * * * \***************************************************************************/ /** \def ACCELERATION_REPRAP acceleration, reprap style. Each movement starts at the speed of the previous command and accelerates or decelerates linearly to reach target speed at the end of the movement. */ #define ACCELERATION_REPRAP /** \def ACCELERATION_RAMPING acceleration and deceleration ramping. Each movement starts at (almost) no speed, linearly accelerates to target speed and decelerates just in time to smoothly stop at the target. alternative to ACCELERATION_REPRAP */ // #define ACCELERATION_RAMPING /** \def ACCELERATION how fast to accelerate when using ACCELERATION_RAMPING. given in mm/s^2, decimal allowed, useful range 1. to 10'000. Start with 10. for milling (high precision) or 1000. for printing */ #define ACCELERATION 1000. /** \def ACCELERATION_TEMPORAL temporal step algorithm This algorithm causes the timer to fire when any axis needs to step, instead of synchronising to the axis with the most steps ala bresenham. This algorithm is not a type of acceleration, and I haven't worked out how to integrate acceleration with it. However it does control step timing, so acceleration algorithms seemed appropriate The Bresenham algorithm is great for drawing lines, but not so good for steppers - In the case where X steps 3 times to Y's two, Y experiences massive jitter as it steps in sync with X every 2 out of 3 X steps. This is a worst-case, but the problem exists for most non-45/90 degree moves. At higher speeds, the jitter /will/ cause position loss and unnecessary vibration. This algorithm instead calculates when a step occurs on any axis, and sets the timer to that value. // TODO: figure out how to add acceleration to this algorithm */ // #define ACCELERATION_TEMPORAL /***************************************************************************\ * * * 3. PINOUTS * * * \***************************************************************************/ /* Machine Pin Definitions - make sure to avoid duplicate usage of a pin - comment out pins not in use, as this drops the corresponding code and makes operations faster */ #include "arduino.h" /** \def USE_INTERNAL_PULLUPS internal pullup resistors the ATmega has internal pullup resistors on its input pins which are counterproductive with the commonly used eletronic endstops, so they should be switched off. For other endstops, like mechanical ones, you may want to uncomment this. */ //#define USE_INTERNAL_PULLUPS /* user defined pins adjust to suit your electronics, or adjust your electronics to suit this */ #define X_STEP_PIN DIO4 #define X_DIR_PIN DIO5 #define X_MIN_PIN AIO5 //#define X_MAX_PIN xxxx //#define X_ENABLE_PIN xxxx //#define X_INVERT_DIR //#define X_INVERT_MIN //#define X_INVERT_MAX //#define X_INVERT_ENABLE #define Y_STEP_PIN DIO6 #define Y_DIR_PIN DIO7 #define Y_MIN_PIN AIO4 //#define Y_MAX_PIN xxxx //#define Y_ENABLE_PIN xxxx //#define Y_INVERT_DIR //#define Y_INVERT_MIN //#define Y_INVERT_MAX //#define Y_INVERT_ENABLE #define Z_STEP_PIN DIO8 #define Z_DIR_PIN DIO9 #define Z_MIN_PIN AIO3 //#define Z_MAX_PIN xxxx //#define Z_ENABLE_PIN xxxx //#define Z_INVERT_DIR //#define Z_INVERT_MIN //#define Z_INVERT_MAX //#define Z_INVERT_ENABLE #define E_STEP_PIN DIO2 #define E_DIR_PIN DIO3 //#define E_ENABLE_PIN xxxx //#define E_INVERT_DIR //#define E_INVERT_ENABLE //#define PS_ON_PIN DIO9 //#define STEPPER_ENABLE_PIN xxxx //#define STEPPER_INVERT_ENABLE /***************************************************************************\ * * * 4. TEMPERATURE SENSORS * * * \***************************************************************************/ /** TEMP_HYSTERESIS: actual temperature must be target +/- hysteresis before target temperature can be achieved. Unit is degree Celsius. */ #define TEMP_HYSTERESIS 5 /** TEMP_RESIDENCY_TIME: actual temperature must be close to target (within set temperature +- TEMP_HYSTERESIS) for this long before target is achieved (and a M116 succeeds). Unit is seconds. */ #define TEMP_RESIDENCY_TIME 60 /** TEMP_EWMA: Smooth noisy temperature sensors. Good hardware shouldn't be noisy. Set to 1.0 for unfiltered data (and a 140 bytes smaller binary). Instrument Engineer's Handbook, 4th ed, Vol 2 p126 says values of 0.05 to 0.1 are typical. Smaller is smoother but slower adjusting, larger is quicker but rougher. If you need to use this, set the PID parameter to zero (M132 S0) to make the PID loop insensitive to noise. Valid range: 0.001 to 1.0 */ #define TEMP_EWMA 1.0 /// which temperature sensors are you using? List every type of sensor you use here once, to enable the appropriate code. Intercom is the gen3-style separate extruder board. // #define TEMP_MAX6675 #define TEMP_THERMISTOR // #define TEMP_AD595 // #define TEMP_PT100 // #define TEMP_INTERCOM /***************************************************************************\ * * * Define your temperature sensors here. One line for each sensor, only * * limited by the number of available ATmega pins. * * * * Types are same as TEMP_ list above - TT_MAX6675, TT_THERMISTOR, TT_AD595, * * TT_PT100, TT_INTERCOM. See list in temp.c. * * * * The "additional" field is used for TT_THERMISTOR only. It defines the * * name of the table(s) in ThermistorTable.h to use. Typically, this is * * THERMISTOR_EXTRUDER for the first or only table, or THERMISTOR_BED for * * the second table. See also early in ThermistorTable.{single|double}.h. * * * * For a GEN3 set temp_type to TT_INTERCOM and temp_pin to AIO0. The pin * * won't be used in this case. * * * \***************************************************************************/ #ifndef DEFINE_TEMP_SENSOR #define DEFINE_TEMP_SENSOR(...) #endif // There is an apparent bug in temp.h that it uses analog pin # corresponding // to the temp sensor #, not the pin # given. So I use AIO0. // name type pin additional DEFINE_TEMP_SENSOR(extruder, TT_THERMISTOR, AIO0, THERMISTOR_EXTRUDER) //DEFINE_TEMP_SENSOR(bed, TT_THERMISTOR, AIO1, THERMISTOR_EXTRUDER) // "noheater" is a special name for a sensor which doesn't have a heater. // Use "M105 P#" to read it, where # is a zero-based index into this list. // DEFINE_TEMP_SENSOR(noheater, TT_THERMISTOR, 1, 0) /***************************************************************************\ * * * 5. HEATERS * * * \***************************************************************************/ /** \def HEATER_SANITY_CHECK check if heater responds to changes in target temperature, disable and spit errors if not largely untested, please comment in forum if this works, or doesn't work for you! */ // #define HEATER_SANITY_CHECK /***************************************************************************\ * * * Define your heaters and devices here. * * * * To attach a heater to a temp sensor above, simply use exactly the same * * name - copy+paste is your friend. Some common names are 'extruder', * * 'bed', 'fan', 'motor', ... names with special meaning can be found * * in gcode_process.c. Currently, these are: * * HEATER_extruder (M104) * * HEATER_bed (M140) * * HEATER_fan (M106) * * * * Devices don't neccessarily have a temperature sensor, e.g. fans or * * milling spindles. Operate such devices by setting their power (M106), * * instead of setting their temperature (M104). * * * * Also note, the index of a heater (M106 P#) can differ from the index of * * its attached temperature sensor (M104 P#) in case sensor-less devices * * are defined or the order of the definitions differs. The first defined * * device has the index 0 (zero). * * * * Set 'pwm' to ... * * 1 for using PWM on a PWM-able pin and on/off on other pins. * * 0 for using on/off on a PWM-able pin, too. * * Using PWM usually gives smoother temperature control but can conflict * * with slow switches, like solid state relays. PWM frequency can be * * influenced globally with FAST_PWM, see below. * * * \***************************************************************************/ #ifndef DEFINE_HEATER #define DEFINE_HEATER(...) #endif // name port pwm DEFINE_HEATER(extruder, PB3, 0) // DIO11 //DEFINE_HEATER(bed, PB4, 1) // DEFINE_HEATER(fan, PINB4, 1) // DEFINE_HEATER(chamber, PIND7, 1) // DEFINE_HEATER(motor, PIND6, 1) /// and now because the c preprocessor isn't as smart as it could be, /// uncomment the ones you've listed above and comment the rest. /// NOTE: these are used to enable various capability-specific chunks of code, you do NOT need to create new entries unless you are adding new capabilities elsewhere in the code! /// so if you list a bed above, uncomment HEATER_BED, but if you list a chamber you do NOT need to create HEATED_CHAMBER /// I have searched high and low for a way to make the preprocessor do this for us, but so far I have not found a way. #define HEATER_EXTRUDER HEATER_extruder //#define HEATER_BED HEATER_bed // #define HEATER_FAN HEATER_fan // #define HEATER_CHAMBER HEATER_chamber // #define HEATER_MOTOR HEATER_motor /***************************************************************************\ * * * 6. COMMUNICATION OPTIONS * * * \***************************************************************************/ /** \def BAUD Baud rate for the serial RS232 protocol connection to the host. Usually 115200, other common values are 19200, 38400 or 57600. Ignored when USB_SERIAL is defined. */ #define BAUD 115200 /** \def USB_SERIAL Define this for using USB instead of the serial RS232 protocol. Works on USB-equipped ATmegas, like the ATmega32U4, only. */ //#define USB_SERIAL /** \def XONXOFF Xon/Xoff flow control. Redundant when using RepRap Host for sending GCode, but mandatory when sending GCode files with a plain terminal emulator, like GtkTerm (Linux), CoolTerm (Mac) or HyperTerminal (Windows). Can also be set in Makefile */ // #define XONXOFF /***************************************************************************\ * * * 7. MISCELLANEOUS OPTIONS * * * \***************************************************************************/ /** \def EECONFIG EECONFIG: Enable EEPROM configuration storage. Enabled by default. Commenting this out makes the binary several hundred bytes smaller, so you might want to disable EEPROM storage on small MCUs, like the ATmega168. */ #define EECONFIG /** \def DEBUG DEBUG enables /heaps/ of extra output, and some extra M-codes. WARNING: this WILL break most host-side talkers that expect particular responses from firmware such as reprap host and replicatorG use with serial terminal or other suitable talker only. */ // #define DEBUG /** \def BANG_BANG BANG_BANG drops PID loop from heater control, reduces code size significantly (1300 bytes!) may allow DEBUG on '168 */ // #define BANG_BANG /** \def BANG_BANG_ON BANG_BANG_ON PWM value for 'on' */ // #define BANG_BANG_ON 200 /** \def BANG_BANG_OFF BANG_BANG_OFF PWM value for 'off' */ // #define BANG_BANG_OFF 45 /** move buffer size, in number of moves note that each move takes a fair chunk of ram (69 bytes as of this writing) so don't make the buffer too big - a bigger serial readbuffer may help more than increasing this unless your gcodes are more than 70 characters long on average. however, a larger movebuffer will probably help with lots of short consecutive moves, as each move takes a bunch of math (hence time) to set up so a longer buffer allows more of the math to be done during preceding longer moves */ #define MOVEBUFFER_SIZE 8 /** \def DC_EXTRUDER DC extruder If you have a DC motor extruder, configure it as a "heater" above and define this value as the index or name. You probably also want to comment out E_STEP_PIN and E_DIR_PIN in the Pinouts section above. */ // #define DC_EXTRUDER HEATER_motor // #define DC_EXTRUDER_PWM 180 /** \def USE_WATCHDOG Teacup implements a watchdog, which has to be reset every 250ms or it will reboot the controller. As rebooting (and letting the GCode sending application trying to continue the build with a then different Home point) is probably even worse than just hanging, and there is no better restore code in place, this is disabled for now. */ // #define USE_WATCHDOG /** analog subsystem stuff REFERENCE - which analog reference to use. see analog.h for choices */ #define REFERENCE REFERENCE_AVCC /** \def STEP_INTERRUPT_INTERRUPTIBLE this option makes the step interrupt interruptible (nested). this should help immensely with dropped serial characters, but may also make debugging infuriating due to the complexities arising from nested interrupts \note disable this option if you're using a '168 or for some reason your ram usage is above 90%. This option hugely increases likelihood of stack smashing. */ #define STEP_INTERRUPT_INTERRUPTIBLE 1 /** temperature history count. This is how many temperature readings to keep in order to calculate derivative in PID loop higher values make PID derivative term more stable at the expense of reaction time */ #define TH_COUNT 8 /** \def FAST_PWM Teacup offers two PWM frequencies, 76(61) Hz and 78000(62500) Hz on a 20(16) MHz electronics. The slower one is the default, as it's the safer choice. Drawback is, in a quiet environment you might notice the heaters and your power supply humming. Uncomment this option if you want to get rid of this humming or want faster PWM for other reasons. See also: http://reprap.org/wiki/Gen7_Research#MOSFET_heat_and_PWM */ // #define FAST_PWM /// this is the scaling of internally stored PID values. 1024L is a good value #define PID_SCALE 1024L /** \def ENDSTOP_STEPS number of steps to run into the endstops intentionally As Endstops trigger false alarm sometimes, Teacup debounces them by counting a number of consecutive positives. Valid range is 1...255. Use 4 or less for reliable endstops, 8 or even more for flaky ones. */ #define ENDSTOP_STEPS 4 /***************************************************************************\ * * * 8. APPENDIX A - PWMABLE PINS AND MAPPINGS * * * * * * list of PWM-able pins and corresponding timers * * timer1 is used for step timing so don't use OC1A/OC1B * * they are omitted from this listing for that reason * * * * For the atmega168/328, timer/pin mappings are as follows * * * * OCR0A - PD6 - DIO6 * * OCR0B - PD5 - DIO5 * * OCR2A - PB3 - DIO11 * * OCR2B - PD3 - DIO3 * * * * For the atmega644, timer/pin mappings are as follows * * * * OCR0A - PB3 - DIO3 * * OCR0B - PB4 - DIO4 * * OCR2A - PD7 - DIO15 * * OCR2B - PD6 - DIO14 * * * * For the atmega1280, timer/pin mappings are as follows * * * * OCR0A - PB7 - DIO13 * * OCR0B - PG5 - DIO4 * * OCR2A - PB4 - DIO10 * * OCR2B - PH6 - DIO9 * * OCR3AL - PE3 - DIO5 * * OCR3BL - PE4 - DIO2 * * OCR3CL - PE5 - DIO3 * * OCR4AL - PH3 - DIO6 * * OCR4BL - PH4 - DIO7 * * OCR4CL - PH5 - DIO8 * * OCR5AL - PL3 - DIO46 * * OCR5BL - PL4 - DIO45 * * OCR5CL - PL5 - DIO44 * * * \***************************************************************************/
// Thermistor lookup table for one thermistor or // identical thermistors in all places. /* This table doesn't depend on the type of electronics, but on the type of thermistor(s) you use. You want one table for each thermistor type you use. */ // How many thermistor tables we have. #define NUMTABLES 1 // Names for our tables, so you can use them in config.h. // Table numbering starts at 0. #define THERMISTOR_EXTRUDER 0 /* You may be able to improve the accuracy of this table in various ways. 1. Measure the actual resistance of the resistor. It's "nominally" 4.7K, but that's ± 5%. 2. Measure the actual beta of your thermistor: http://reprap.org/wiki/MeasuringThermistorBeta 3. Generate more table entries than you need, then trim down the ones in uninteresting ranges. In either case you'll have to regenerate this table with createTemperatureLookup.py, which requires python, which is difficult to install on windows. Since you'll have to do some testing to determine the correct temperature for your application anyway, you may decide that the effort isn't worth it. Who cares if it's reporting the "right" temperature as long as it's keeping the temperature steady enough to print, right? */ // The number of value pairs in our table. // Must be the same for all tables. #define NUMTEMPS 21 uint16_t const temptable[NUMTABLES][NUMTEMPS][2] PROGMEM = { // Table for the Extruder. // Thermistor: unknown // ./createTemperatureLookup.py --r0=100000 --t0=25 --r1=0 --r2=4700 --beta=4066 --max-adc=1023 // {ADC, temp*4 }, // temp Rtherm Vtherm resolution power { 1, 6645}, // 1661.41 C, 1 Ohm, 0.005 V, 480.29 C/count, 0.02mW { 54, 1554}, // 388.64 C, 56 Ohm, 0.264 V, 2.13 C/count, 1.25mW { 107, 1269}, // 317.50 C, 117 Ohm, 0.522 V, 0.90 C/count, 2.34mW { 160, 1121}, // 280.36 C, 185 Ohm, 0.781 V, 0.56 C/count, 3.30mW { 213, 1020}, // 255.23 C, 263 Ohm, 1.040 V, 0.41 C/count, 4.12mW { 266, 944}, // 236.05 C, 351 Ohm, 1.299 V, 0.32 C/count, 4.81mW { 319, 881}, // 220.34 C, 452 Ohm, 1.558 V, 0.27 C/count, 5.36mW { 372, 827}, // 206.83 C, 571 Ohm, 1.816 V, 0.24 C/count, 5.78mW { 425, 779}, // 194.79 C, 710 Ohm, 2.075 V, 0.22 C/count, 6.07mW { 478, 734}, // 183.74 C, 875 Ohm, 2.334 V, 0.20 C/count, 6.22mW { 531, 693}, // 173.34 C, 1077 Ohm, 2.593 V, 0.19 C/count, 6.24mW { 584, 653}, // 163.33 C, 1327 Ohm, 2.852 V, 0.19 C/count, 6.13mW { 637, 613}, // 153.48 C, 1646 Ohm, 3.110 V, 0.19 C/count, 5.88mW { 690, 574}, // 143.54 C, 2066 Ohm, 3.369 V, 0.19 C/count, 5.49mW { 743, 533}, // 133.26 C, 2644 Ohm, 3.628 V, 0.20 C/count, 4.98mW { 796, 489}, // 122.28 C, 3491 Ohm, 3.887 V, 0.22 C/count, 4.33mW { 849, 440}, // 110.02 C, 4851 Ohm, 4.146 V, 0.25 C/count, 3.54mW { 902, 381}, // 95.39 C, 7393 Ohm, 4.404 V, 0.31 C/count, 2.62mW { 955, 302}, // 75.57 C, 13841 Ohm, 4.663 V, 0.46 C/count, 1.57mW {1008, 141}, // 35.46 C, 63000 Ohm, 4.922 V, 1.45 C/count, 0.38mW {1021, 1} // 0.43 C, 340333 Ohm, 4.985 V, 5.42 C/count, 0.07mW} };
<?xml version="1.1" encoding="utf-8"?> <machines> <machine experimental="0"> <name>Monster w/Teacup (115200 Baud)</name> <geometry type="cartesian"> <axis id="x" length="140" maxfeedrate="500" stepspermm="266" endstops="min"/> <axis id="y" length="80" maxfeedrate="500" stepspermm="266" endstops="min"/> <axis id="z" length="55" maxfeedrate="500" stepspermm="266" endstops="min"/> </geometry> <tools> <tool name="Stepper-based extruder" type="extruder" material="abs" motor="true" floodcoolant="false" mistcoolant="false" fan="false" valve="false" collet="false" heater="true" stepper_axis="a" motor_steps="1000" heatedplatform="false" /> </tools> <clamps></clamps> <firmware url="???" autoupgrade="false"></firmware> <help name="Teacup Help" url="http://reprap.org/wiki/Teacup_Firmware"></help> <driver name="reprap5d"> <okAfterResend>false</okAfterResend> <!-- Teacup option for reprap5d driver --> <alwaysRelativeE>true</alwaysRelativeE> <!-- Teacup option for reprap5d driver --> <pulserts>false</pulserts> <waitforstart enabled="false"></waitforstart> <debugLevel>0</debugLevel> <fived>true</fived> <rate>115200</rate> </driver> <warmup> </warmup> <cooldown> </cooldown> </machine> <machine experimental="0"> <name>Klimentkip (115200 Baud)</name> <geometry type="cartesian"> <axis id="x" length="205" maxfeedrate="5000" stepspermm="31.496" endstops="min"/> <axis id="y" length="195" maxfeedrate="5000" stepspermm="31.496" endstops="min"/> <axis id="z" length="140" maxfeedrate="200" stepspermm="1133.858" endstops="min"/> </geometry> <tools> <tool name="Stepper-based extruder" type="extruder" material="abs" motor="true" floodcoolant="false" mistcoolant="false" fan="true" valve="false" collet="false" heater="true" stepper_axis="a" motor_steps="1000" heatedplatform="true" /> </tools> <clamps></clamps> <firmware url="???" autoupgrade="false"></firmware> <help name="Gcode Help" url="http://reprap.org/wiki/Gcode"></help> <driver name="reprap5d"> <okAfterResend>true</okAfterResend> <pulserts>false</pulserts> <waitforstart enabled="false"></waitforstart> <debugLevel>0</debugLevel> <fived>true</fived> <rate>115200</rate> </driver> <warmup> </warmup> <cooldown> </cooldown> </machine> <machine experimental="0"> <name>RepRap5d (76800 Baud)</name> <geometry type="cartesian"> <axis id="x" length="205" maxfeedrate="5000" stepspermm="31.496" endstops="min"/> <axis id="y" length="195" maxfeedrate="5000" stepspermm="31.496" endstops="min"/> <axis id="z" length="140" maxfeedrate="200" stepspermm="1133.858" endstops="min"/> </geometry> <tools> <tool name="Stepper-based extruder" type="extruder" material="abs" motor="true" floodcoolant="false" mistcoolant="false" fan="true" valve="false" collet="false" heater="true" stepper_axis="a" motor_steps="1000" heatedplatform="true" /> </tools> <clamps></clamps> <firmware url="???" autoupgrade="false"></firmware> <help name="Gcode Help" url="http://reprap.org/wiki/Gcode"></help> <driver name="reprap5d"> <okAfterResend>true</okAfterResend> <pulserts>false</pulserts> <waitforstart enabled="false"></waitforstart> <debugLevel>0</debugLevel> <fived>true</fived> <rate>76800</rate> <!-- higher and fw drops too many chars --> </driver> <warmup> </warmup> <cooldown> </cooldown> </machine> <machine experimental="0"> <name>Teacup (115200 Baud)</name> <geometry type="cartesian"> <axis id="x" length="205" maxfeedrate="5000" stepspermm="31.496" endstops="min"/> <axis id="y" length="195" maxfeedrate="5000" stepspermm="31.496" endstops="min"/> <axis id="z" length="140" maxfeedrate="200" stepspermm="1133.858" endstops="min"/> </geometry> <tools> <tool name="Stepper-based extruder" type="extruder" material="abs" motor="true" floodcoolant="false" mistcoolant="false" fan="true" valve="false" collet="false" heater="true" stepper_axis="a" motor_steps="1000" heatedplatform="true" /> </tools> <clamps></clamps> <firmware url="???" autoupgrade="false"></firmware> <help name="Teacup Help" url="http://reprap.org/wiki/Teacup_Firmware"></help> <driver name="reprap5d"> <okAfterResend>false</okAfterResend> <!-- Teacup option for reprap5d driver --> <alwaysRelativeE>true</alwaysRelativeE> <!-- Teacup option for reprap5d driver --> <pulserts>false</pulserts> <waitforstart enabled="false"></waitforstart> <debugLevel>0</debugLevel> <fived>true</fived> <rate>115200</rate> </driver> <warmup> </warmup> <cooldown> </cooldown> </machine> <machine experimental="1"> <name>Mendel with Gen 3 Electronics (19200 Baud)</name> <geometry type="cartesian"> <!-- different pulleys on X and Y axii --> <axis id="x" length="200" maxfeedrate="5000" stepspermm="47.069852" endstops="min"/> <!-- 16th-step driver --> <axis id="y" length="200" maxfeedrate="5000" stepspermm="47.0698523" endstops="min"/> <!-- 16th-step driver --> <axis id="z" length="140" maxfeedrate="30" stepspermm="160" endstops="min"/> <!-- quarter-step driver --> </geometry> <tools> <tool name="Stepper-based extruder" type="extruder" material="abs" motor="true" floodcoolant="false" mistcoolant="false" fan="true" valve="false" collet="false" heater="true" motor_steps="200" heatedplatform="true" /> </tools> <clamps></clamps> <help name="RepRap Help" url="http://www.reprap.org/ReplicatorG"></help> <driver name="reprap5d"> <!-- optional: <portname>COM1</portname>!--> <pulserts>false</pulserts> <waitforstart enabled="false"></waitforstart> <fived>true</fived> <rate>19200</rate> </driver> <warmup> </warmup> <cooldown> (Turn off steppers after a build.) M108 S0 </cooldown> </machine> <machine experimental="1"> <name>Darwin with Gen 2 Electronics (19200 Baud)</name> <geometry type="cartesian"> <!-- different pulleys on X and Y axii --> <axis id="x" length="200" maxfeedrate="5000" stepspermm="47.069852" endstops="min"/> <!-- 16th-step driver --> <axis id="y" length="200" maxfeedrate="5000" stepspermm="47.0698523" endstops="min"/> <!-- 16th-step driver --> <axis id="z" length="140" maxfeedrate="30" stepspermm="160" endstops="min"/> <!-- quarter-step driver --> </geometry> <tools> <tool name="Stepper-based extruder" type="extruder" material="abs" motor="true" floodcoolant="false" mistcoolant="false" fan="true" valve="false" collet="false" heater="true" motor_steps="200" heatedplatform="true" /> </tools> <clamps></clamps> <help name="RepRap Help" url="http://www.reprap.org/ReplicatorG"></help> <driver name="reprap5d"> <!-- optional: <portname>COM1</portname>!--> <pulserts>false</pulserts> <waitforstart enabled="false"></waitforstart> <checksums>false</checksums> <fived>true</fived> <rate>19200</rate> </driver> <warmup> </warmup> <cooldown> (Turn off steppers after a build.) M108 S0 </cooldown> </machine> <machine experimental="1"> <name>Mendel with Mega/RAMPS Electronics (57600 baud)</name> <geometry type="cartesian"> <!-- different pulleys on X and Y axii --> <axis id="x" length="200" maxfeedrate="5000" scale="47.069852" endstops="min"/> <!-- 16th-step driver --> <axis id="y" length="200" maxfeedrate="5000" scale="47.0698523" endstops="min"/> <!-- 16th-step driver --> <axis id="z" length="140" maxfeedrate="150" scale="160" endstops="min"/> <!-- quarter-step driver --> </geometry> <tools> <tool name="Stepper-based extruder" type="extruder" material="abs" motor="true" floodcoolant="false" mistcoolant="false" fan="true" valve="false" collet="false" heater="true" motor_steps="200" heatedplatform="true" /> </tools> <clamps></clamps> <help name="RepRap Help" url="http://www.reprap.org/ReplicatorG"></help> <driver name="reprap5d"> <!-- optional, defaults to first serial port found. <portname>COM1</portname> --> <rate>57600</rate> <parity>8</parity> <pulserts>true</pulserts> <waitforstart enabled="true" timeout="1000" retries="3"></waitforstart> <fived>true</fived> <!-- optional, defaults to 1. <databits>1</databits> --> <!-- optional, defaults to N. <stopbits>N</stopbits> --> </driver> <warmup> </warmup> <cooldown> (Turn off steppers after a build.) M108 S0 </cooldown> </machine> </machines>
No comments:
Post a Comment